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_ct--The paper presents an application of adaptive finite element methods to the modeling of
low-cycle mntinunm damage and life inedic_ion of high-temperature oomponeutL The major objective
is to provide automated and a_-urate modeling of damaged zones through adaptive mesh refinement and
adaptive time-r,epping methods. The damage modeling methodology is implemented in at mini way
by embedding damage evolution in the _t no--near mlutiun of elago-vl*mplUtic deformation
problems. This nonlinear boundary-value problem is digretized by Iglaptive finite eknumt methods.
The automated h-odapt_e mesh refinement, are _ by error indicamr_ baaed on selected lmncipal
variables in the problem (_tesmt, nonelastic stnfim, damage, etc.). In the time domain, adaptive time-
stepping is used, combinedwith• predi_o_r lime marching aigorith_ The time step lele_on
is controlled by required time at_racy. In order to take into aemunt mmng temperature dependency
ofmaterial parametem, the nonlinear structural solution is mupkd with thermal anaJyl_ (oae-way
ooupling). Several test examplm illustrate the importan_ and benefits of adaptive mesh tdmements in
agcurste wedic-_ion of damage level, and failure time.

1. INTIODUCTION

Unified viscoplastic constitutive models have evolved
over the last 20 years to provide a means for

analytically representing a material re_onse from the
elastic through the plastic range, including strain-rate
dependent plastic flow, creep and stress relaxation.
These theories are guided by physical considerations
including dislocation dynamics and are based on the
principles of continuum mechanics.

The first multi-dimensional formulations of elasto-

viscoplastic constitutive equations was due to Bodner
and Partom [1]. Since then, a number of constitutive
models have appeared; many of these theories are

summarized in review articles that appear in Ref. [2].
A NASA-Lewis geseazr.h Ceater sponsored research
program (HOST)[3, 4] conducted by the Southwest
Research Institute recently concluded a four year
research effort to develop unified constitutive models
for isotropicmaterialsand todemonstrate their

fuiness for analysis of high temperature gas turbine
engines. One result of thb study b material property
data for high temperature nickel-based alloys over
a wide temperature range. The unified models
employed were those of Bodner-Partom and Walker.
More recently, a viscoplastic constitutive model was
developed at NASA Lewis by Freed [5] and Freed

and Veriili [6], and then refined by Freed and Walker
[7]. Relevant material constants were determined
experimentally for aluminum, copper and nickel.

Unified viscoplastic theories have hem implemented
by a number of finite element _ The first
use of unified constitutive modeb in • finite element

program was by Newman et ai. _ Later, under
the NASA HOST program, the Bodner-Partom and
Walker models were implemented into finite element
codes by Genera] Electric and Pratt and Whitney.
Kaufman et al. [9] describes these efforts as applied

to gas turbine component& Moreno and Jordan [10],
under the NASA HOST program, developed and

applied a unified constitutive model to gas turbine
combnstors nsing the MARC code. Recently, a

finite element vbcoplastic study of cylindrical thrust
chambecs was presented by Arya [11]. Detailed studies
of several rate-dependent plasticity models and their
numerical hnplememation using adaptive finite ele-
meat methods were condtgted by Bau and Oden [12].
These studies were extended for tlaumovbcoplastic
analysis by Thornton et ai. [13_

Models of material damage and ndiability studies
are relatively teoent develolmmnt& but _l:nifimnt pro-
greu has been made in understanding and modeling
these problems. The modeb of coatimmm damage
development, which are of pt_aavy interest here,
are baaed on micro-mechanical studim ofmicro-crack

nucleation and growth,discussedby Ashby and Raj

[14], Greenwood[15] and many other researchers.
Phenomenological descriptions of these models are
usually based on the early work of Kachanov [16],
where the general evolution law was introduced for
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Fig. i. Adaptive mesh refmemeats for damage modeling.
(a) resolution of distributed damage zones. Co)localization

of macro-crack initiation-

damage parameter. These models fit very well into
the framework of unified viscoplastic theories, and
several detailed evolution forms have been proposed
(see, for example, papers of Bodner and Chart [17],
Leckie and Hayhunt[18], Simo[19], and referencea
therein). The equatiom presented in these works are
convenient for the description of low-cycle damage,
where the damage occurs relatively quickly under
a general stress history. For problems with cyclic
loads, the evolution of damage is more conveniently
expressed in terms of the number of cycles. Theories
of this type were reviewed by Nelson [20]. In high-
cycle fatigue modeling, they are computationally
more etF_ent than time integration methods. To

date, no adaptive finite element solutions have been
reported for continuum damage modeling in the
literature.

Therefore, the main objective of this study was
to prove the feasibility and practical benefits of using
adaptive finite element methods to model continuum
damage and to improve life prediction capabilities for
high-temperature components and other structurm
subjected to hostile thermo-mechanical environmmxts.

The major benefit of such an application of adaptive
methods is that the adaptive mesh refinement
on rigorous error estimators, can provide automated
and exact resolution of critical damage zones (Fig. ia)
and, moreover, an automated indication of pouible
indication of macro-crac_ (Fig. Ib). Independent of
adaptive mesh refngment, an adaptive time-etepping
method can provide automated control of the accur-
acy of time-marching procedures, and greatly minimize
the computational effort necea.utry to obtain a final
solution.

2. UNIFIED VgSCOPLASTIC THY.ORI]_ AND

CONTINUUM DAMAGg MODELINGS

Complex mechanical behavior of many high.
temperature engineering materials can be improved
by the constitutive models known as unified elasto-
viscoplastic theories. These theories, consistent with
micro-mechanics of metallic materials, describe in a

unified manner various aspects of elastic and non-

elastic behavior of structures. More, these approaches
are readily expandable to include _ach effects as crack

nucleation, continuum damage, etc. In this study the
Bodner-Partom [I, 17] and the Freed-Walker cow

stimtive theories [5-7] were implemented for damage
modeling. It should be noted that presently there exists
a wide variety of viscoplastic constitutive theories
and corresponding damage models. However, the
primary objective of this paper is not to study these
models, but to develop and demonstrate adaptive
finite element techniques in application to damage
modeling. Hence the above two constitutive theories

were implemented in this study. Importantly, the
adaptive finite element techniques developed herein
is applicable to a much wider class of continuum
damage models.

2.1. Basic formulations

The internal-state-variable constitutive formulations

are to be used in the solution of infinitesimal, quasi-
static, isothermal, initial-bouudary-value problems.
Consider a viscoplastic structure occupying a region
fl with boundary Off. The behavior of the structure
is described by the following system of differential
equations:

(1) Equilibrium in rate form:

(i)

where uu denote components of the stress
tensor, b_ are the body force components per
unit volume, and the summation convention is

employed.
(2) Kinematic relation for velocity gradients:

(2)

where e_ denotes the total strain components
and superscripts E and P denote elastic and
inelastic strain components, respectively. The
components of the displacement rates are _.

O) Comtitutive relations:

/

I
(no.un)j

(3)

where F_ represent Hook_'s tensor of elasticity
parameters, _ are components of a tensor of
thermal expansion parameters, and _ represents

the rate of the change in temperature. Both Eta
and ¢_uare temperature dependent. The consti-
tutive functions are f# and g_where Z, represent
internal state variables. These functions and

state variables characterize the viscoplastic
response of the material.

The description of the problem is completed by
prescribing the boundary and initial conditions,

3<
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,t,,,j=e, ou o_,J

where afl:at2_ uq_, _, are prescribed surface

displacement rate_:_ the components of a unit
normal vector, and t$, the prescribed s_rfa_e traction
rates. The initial conditiom include specifying the dix-

placements, stresses, and internal state variables, i.e.

u,(x,O),e,(x,o),z,(x,O) xet_ (5)

2.2. Continuum damage modeb

The continuum damage modefing desenbes the
deterioration of mechank_ properties of mate_s
by development of in_rmn cracks and voids.
According to maUnd tck-noe theories presen_d, for
example, by Ashby and Raj [14] or Greenwood [15],
the _owth of damage at grain _es i, expressed
in terms of two mechanisms: nucleation and growth.

The damage parameter m is then introduced, and can
in_re_ as the ratio of damaged cross section

(A_) (or, _l_fively, volume) to the ori_nal area

(A.._):

A_
_ml-- (6)

A/

The n_cro_n_ comkh=ed bere are i, the range

of 0.01 mm in length. The rupture _rion is co- 1,
which corresponds to the mturafion of the material
with voids. Alternatively, a single crack may grow
to a size on the order of I ram. In the latter case,

the crack i, Wo big to be treated in a continuum

sense, and its propagation shoed be followed u_ng
the methods of fnu_ure mechank_.

Continuum damage modefing is easily h3corpor_ed
into the viseop_fic constitutive theories by _-W_
during the evolution _w for the damage parame_r.
Usua_y _e genend Kachanov form based on
separation of vanabks m accep_d:

where o is the stress state in the body.

More generally, otbe_ paramet=_ can be used in
the evolution law. Moreover, the damage parameter

is often decomposed into isotropic and anisotropic
components. Within thb class, two low-cycle damage
models have been corn/tiered in this study based on

the Bodner and Chan [17] and Greenwood [15] models.

However, there are several problems with practical
application of directional damage, reliability of these
models and conducting experiments relevant for the

evolution of_ parameters. Even the ex_nsive
ex_en_ presented m _fs. [3,4, 17] did not
pro_de all the necessary dat_ and, hence, the damage
model was limited m rite motropic damage. Tber_

fore, numerical hnpknnent_fion of O_ study was aho
fin_d to isotropic damage.

Once 0_e damage parameter _ i_ cak_a_d, it
shouldbesomehow incoq_ora_d mW the constitutive

theoff. T_s m ba_d on a _ght forward in_pret-
ation of the damage lutrameter, o_, as a ratio of area

of vokh in a given cro_section to the original area,
as shown in eqn (6). The result of this reduction of
area i¢ m_t the real stress (oj) in a material is higher
than the nominal stress (_._):

Ai

I Ai _ Avid Uumm

(8)
"(1 -®)"

In the Bodner-Pastom theory this results in the
modification of the nonelastic strain rate equafioI}.
The details of this modification can be found in
[17]. The same principle, applied to Freed-Walker
theory['/], _m the use ors real stress rather than
a nominal stress in the evolution equation. Therefore,
to incorporate continuum damage, the stress deviator

($_) in the viscoplastic model used in this study is
being replaced by:.

s,_.-_-.(z-o,,)s,. (9)

Thin mphtcement means that the _tr'-_ates _ored in

the program are _ suesse_ but the nonelastic
flow ride opera_ on nud sUesses. Consequently, the
back suem B and _e drag su_ss D in the_ model are
real strewes.

$. FINITg ID.O4ENT SOLUTION OF VISCOPLASTIC

PROBLEMS WITH DAMAGE

The boundary-value problem described in the

previous sections is strongly nonlinear and can only
be solved by numerical techniques, such as the finite
dement method. Application of this method requires
recasting of the problem in a weak, variational form.

3. I. Weak formulation

The rate form of the equilibrium equations de-
scribed earlier can be viewed as a constraint condition

on the constitutive equatiom. A weak formulation

of the equilibrium equations, su_ent to include
the necemry consU_nt con_fion, h developed here.
The equilibrium condifiom in terms of the _x_u rates
are of the form

wbe_e _t_ 'qa- z_
(10)

i' n_ ft_(_t_, Zt) (no sum)

_,-- g,(_rv, Z.). (no sum).

c/
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H_re

where s u and ZI are understood to depend upon uu
and to satisfy initial conditions.

In order to obtain a weak formulation of a

boundary-value problem the space of displacement
rates (solution space of trial functions) is introduced.

u-{_[w',,(fl)] s, t(x)-.0as ixll--,_} (12)

Conversely, any solution of the governing equations
and boundary conditions will also satisfy eqn (15).

3.2. F'mite element formulation

A finite element approximation of eqn (15) is
obtained by introducing approximations of the trial
and test functions:

N

ui(x) =E,_j(x)

o'.(x)- E /

,p

(16)

and the space of test functiom

r-{ve[W_,(fly v, ,(x)--.0 as Ilxg-*oo}. (13)

where t_ is a computational domain, N is the
dimemion of the physical space (2 or 3), and W'_'(fl)
is the Sobolev space, where specific values of m, p
and q depend on the particular forms of constitutive
equatiom governing the material under comide_tion.

Multiplying the equilibrium equation by a suitably
smooth test function vl-t,t(x) and integrating over
f_ the weak form of the rate equilibrium equations
can be obtaine_

ae_ dt_ = 0 for all t,t in V. (14)

After the substitution of the constitutive equations,

application of the divergence theorem and a grouping
of terms the following variational problem is obtained:

Wmd a displacement rate field t --. _(x, t ) in V+{0}
such that for every t

fa E_"k., v_ dO --/a E0ut_t'_ d_

+fob, f i,

for all v, in V. (15)

The rrates of nonelastic strains tt_ are obtained from
the relevant constitutive theory, and the pointwise
values of rates of temperature _' were read in from
the file created by thermal analysis program. Here
d_ and ds are volume and surface measures, t] is

any function defined on fl such that its traze on the
boundary segment Ofl_ is_(where ._¢3fl t _). It is

easily verified that any sufficiently smooth solution of
eqn (1) will also satisfy the governing equations.

where N is the number ofnod_ i indicates the vector

components, ¢b_is a basis fmgtion, and u_,j_ and ,_(t)
are the values ofu_, v_, and _.(t) at nodej at time t,
respectively.

Recasting these approximations into a matrix form
and employing standard notation, gives the time

element approximation for _(x, t) at time t

when: fl denotes the elm_t volume, 0f_ denotes
an element surface where Wactiom are defined, and
B is the main displacemem matrix.

The temperature affects the viseopinstic structural
analysis directly in three ways: (1) the elasticity
matrix E(T) and the coeff_mt of thermal expansion

e_(T) depend on temperature, (2) nodal ._(T)
depend on the local temperature rates tW), and (3)
several parameters in the viscoplastic constitutive
model are temperature dependent.

3.3. Viscop/mt_c.udut_o_medwd _ damage model/ng

In this section, an algorithm used for the solution
of viscoplastic problems with damage modeling is

presented. In addition to this basic algorithm, an
interface was provided for the thermal analysis,
wherein temperature histories can be read into the
mructuml eode.

An uncoupled (sometimes called one-way coupled)

formulatoin was used for this approach, wherein
the _i problem is solved first, followed by the
viscoplastic analysis. The tran_C_mtthermal problem
is solved by time marching with a time step AfT, and
the nodal temperatures at successive times t_, t2 ....
are obtained. These temperature vectors are used as
input to the structural analysis.

The first computation in the structural analysis is
to solve an initial statics problem ff the initial tem-
perature distribution T(x. 0) is not equal to a uniform

, . \
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reference temperature or ff any initial static loads are

present. The results of this analysis me the initial con-
ditions (displacements and stresses) for the tra_ent
viscoplastic analysis.

The viscoplastic analysis time marches with a
time step At,. Experience has showa that the time step
required for the structural analysis is usual/y smaller
than for the thermal analysis, i.e. AT, < Atr. At inter-
mediate times in the structural analysis, the tempera-

tures are finearly interpolated from the temperatures
known at the beginning and end of the larger thermal
time intervals.

A compntationally elficient method for tracing the
solution of initial-boundary-valne _ in visco-
plasticity, which utilize a hidden vzxiabie constitutive
formulation is described here. The strategy employed
in the viscoplastic algorithm is as follows:

With the initial distribution ofmn_, temperature,
and internal variable specified, use the equilibrium

equations to obtain the nodal displacement rates.
Then integrate the constitutive equations forward in
time at the element Gauss integrmiea points. With

updatedvalues of the stress, tempmunre, and internal
variables at the new time, the eqmTffexium equations

are solvedagain. This sequence is determining the
nodal displacement rates, then advancing the consti-
tutive equations in time is continncd until the desired
history of the initial-boundary-value problem has
been obtained. Thus, the algorithm _ through
the following steps:

5

in this study. This technique wfll be described in the

next section.

(1) At time t, ,0, initialize el, Zfaad a_ for each
element.

(2) Calculate t_ _ f#(e¢, Zt,c_) fogeach element
at t - t, [thtm determining the right-hand side
of eqn (17)1.

(3) Assemble and solve the _ condition
for uh(t.).

(4)Calculate g¢(t,) ffi B_t(t,) for each element.

(5)Calculated£(t.)- F_.(io(t.)-i[(t.))- Ear'(t,).
(6)Calculate_(t,) -- g,(oo(t.),Zt(t.)).

(7) Calculate &,(t,) ,_f_(w,(t,), adt,) ).
(8) Integrate _s, _,and _, fmmud over some

appropriate At, for each dement to get

O.wt,÷|._÷,u.) ' Z#(t..t._÷_ mini m_O.÷l.tm÷ta.).

(9) If t.+ t" t,_- At, < t,._ go'to 2, otherwise stop.

Step 8 characterizes an explicit Ebeme, and this

step can be replaced by a subromiue for impficit
method if needed. If predictor-cmector type inte-

gration schemes are used, a dight modification is
necessary beginning with Step 8 to be described in
Section 4.2. The computational method above has

been presented for a constant time step At,. The com-
putational experience by several _tigators [9, 12,
16, 21] indicates that a very small time step can be
required because of the mathematka_ stiff nature of
the constitutive equations des_bing the internal state
variables. To gain improved etfu:ieacy and refiability,
a variable time step algorithm has been implemented

4. ADAPTIVg COMPUTATIONAL _UI_

In this study, adaptive computational techniques
were used to provide the maximmm reliability of
results at the minimum computatiomd cost. These
techniques are used to adapt their pm'ameters to
changing characteK_tic of the solution during the
solution process. In this study, two basic adaptive
methods were used, namely h-adapt/remesh refine-

ment and adaptive time stepping. The basics, of
these techniques will be d/scussed as the following
subsections. ,.

4.1. Error estimattm and adaptwe mesh refinement

Adaptive mesh refinement, baaed on rigorous
error estimates, enables to resolve a Imsic question

of modem computational mechanics: what is the
accuracy of the numerical solutian? equivalently,

how good are the answers7 To systematically reduce
error by adaptively c.hangi_g mesh sizes or spectral
orders of approximations, one must obviously have
some means to judge the distribution of error in a
numerical solution.

Some of the mint important results getated to error
e_mation and adaptive techniques for finite element
methods and details of their derivations and proofs
can be found in RefL [22-24]. The enm estimators
and indicators are the basis for adapti_ mesh refine-
meats, which modify the mesh in onler to minimize
the en'or at minima] computatiomd cost. In this

study, interpolation error estimators combined with
/, _t techn/quu have been _ted for the
solution of _ pmblem_ with damage.
The intapolatim methods me the in_n theory
of finite elements in Sobolev norms to ps,oduce rapid

(sometimes crude) estimates of the local error over
individual elements. Simplifying this mmewhat gives
an errorestimatedefmedasthemaximum difference
of the effective strain within the union of that par-

ticular element £t. and its neighboring elements. The
h-methods are the mesh refinement methods, based

on local sub_viuon of dements into smaller elements.

An h-type refinement strategy may be outlined as /"

follows [l 1]:
(1) Given a solution at time t', solve the inifi_-_'_"---_

boundary-value problem until time t"+' and calculate
the estimated error for each element. The interval

t"÷t-t" is much larger than the time marching step
At.

(2)Dmemiuethemnguitudeof _ _q_st _u_
error Emu, and set a threshold value fog m£mement

0ur.=_, where a is a fraction betweea z_o and one.
(3) Determ_ the number of ekmems to be refined

using the threshold value. If this number of elements
is greater than pN. where N, is the mmber of ele-
ments and _ is a fraction between zero and one, a
uniform distribution of error exists and no refinement

%,,.-
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is made (go to Step !). Otherwise, refine all elements

for which Et > _, where F_ is the error for a
typical element k in the mesh.

(4) If refinement has occurred, go back to time t',
interpolate the solution on a new mesh, and resolve
the boundary value problem on the new mesh. Then
again estimate the elemental error at time t"÷i.

(5) If element errors exist such that Et > _ go
to Step 3. Otherwise the errors have been reduced
sufficiently, go to Step I with a new refined mesh, and

new starting time t "+'.
-'-------]Tis quite essential for the a_'_racy of the solution

that after mesh refinement at time t"÷| the solution

prooess is hacked to the time t'. This assured that the

interval t'_t "÷' is covered on adequately refined
mesh, so there is no excessive accumulation of error.

4.2. Adaptive time stepping techniques

Tane-daix'ndent problems are usually solved by
time marching technique_ where the time domain is

discretized into a number of steps t_, t2 ..... t,, and
the solution proceeds by solution of a sequence of
incremental problems. In the simplest algorithms,
the time step interval is kept constant throughout

the whole computational procefa. In most practical
applications, a fixed time step leads to relatively
ine_icient solutions, and adaptive adjustments of At
are very desirable. In _ section, an adaptive time-
_-pping technique for thermo-viscoplastic structural
analym with damages is described.

For _plicity, comider the single ordinary differ-
ential equatioa,

: -/(y, t). (18)

YES NO

_ . ,. i :_"

Fig. 2. Adaptive fimestepping algorithm for viacoelas_
plutic evolution problems.

variables oJ,, with the maximum of these components

selected as the controlling error. The corrector phase
is the modified Newton scheme,

:._, = (Y,+ :L..)/2 (22)

:%, =y, + At:.,,. (23)

A flow chart depicting the adaptive scheme is
shown in Fig. 2.

The solution is advanced using a predictor-
co_r scheme. The predictor phase consists of an
Euler step:

yL,_-y, + &t:, 09)

:,'.= =/_L-., t + At). (20)

An error indicator E[12, 22] is then computed
from

. I&t(:L_,-:,)l
'IyL,_I (2D

The error indicator is next compared with a preset
error criterionand if the criterion is met, the timestep
is small enough to proceed to the corrector stage.
Otherwise, the predictor phage for eqs (18)-(21) is
repeated with a smaller time step. On the other hand,
if the error is smaller than the ram-defined value F_,
the time step is im:reased to improve computational
efficiency. For the viscoplastic evolution equations
with damage, the control variables used to calculate
the error indicator were the components of a stress

tensor _ro, internal state variables Z_, and the damage

& NUMF_CAL

In this section, seJected mmmricai example, oriented
on verification of damage modeling and on illustration
of advtmtages of adaptive methods in application
to damage modeling are presented. In particular,
discussed are: (i) a simple tension creep test with
experimentalveri_tion; (2) an isothermal structural
problemwithadaptivemeshmhzment; (3)athermo-
structuralproblemcorrespondingtothespaceshuttle

main engine (SSME) combustion chamber liner.

5.1. Tensffe creep test

The main purpose of this example is to verify the
viscoplastic constitutive model and damage modeling
by comparison of nmmrical predictions with avail-

able experimental data [17]. The example is a tensile
creep test of nickel superalloy BIgO0 + Hf subjected
to constant strms level of 215 MPa and temperature
of 982°(3. For this case, both tertiary creep corre-
sponding to continuum damage and final rupture
of the specimen were ob6erved. The resulting time-

strain curves and damage histories are-presented
and compared with experimental data in Fig. 3. For
comparison, the same examples were solved without

%d"
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Damage

r I

0.2.0 0.40 0.50 0.80 1.00 1.20 1.40 1.80 1.80 2.00 2.20

TIME (HR5) X iOmm-I

Strain

n

_°=,7,";_.0_ experimental

o

o I I I I P I I ! I I I

0.20 0.40 0.§0 0.80 1.nO I.ZO l.dlO 1.80 1.80 2.00 Z.20

Fig. 3. Time histories ofstrain and damage for the creep test at 982°C under stxess of 215 MPa-e_mdmenN

and numerkal results.

o

t_t

Z

aeg

L r I O.a60 i 1 p l ! ! I IO.ZO 0.40 0.80 l.nO I.ZO 1.40 I,SO 1.80 2.00 Z.ZO

TIME IHRS] X lO=m-I

Fig. 4. Comparison of models with damage and without damage modeling. Tune hittorie, of strain for

the creep test it 982°C under strm, of 215 MPa.

At
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damage modeling. The results of these comparisons

axe presented in Fig. 4.

The following conclusions can be drawn from

this example and other tests shown in Ref. [17]:

(1) the damage evolution models describe correctly

the tertiary creep zone and transition to rupture;

(2) the evolution of damage and rupture time are
extremely sensitive to the stress level---small variation

of stress or material constants for damage cause

considerable change in the rupture time. A more

extensive study of this issue is presented in Ref. [17];

(3) the actual rupture of the experimental specimen

occurs at damage levels smaller than the theoretical

rupture condition (a_ = 1). This is most probably

caused by the fact that local damage concentrations,

say on material inhomogeneities, cause localized

growth of continuum damage, transition to macro-

cracks, and their propagation before a uniform satur-
ation of the whole cross-section with micro-cracks

can occur; (4) without damage modeling, the tertiary

creep zone and rupture of the material are not

predicted by the viseoplastic constitutive theories---

thus damage modeling is necessary to capture these

phenomena.

5.2. L-shaped domain

A plane stress L-shaped domain subjected to pre-

scribed displacement rotes is presented as an example

of a n_sh-adaptiv¢ isothermal analysis with damage

modeling (Fig. 5). In particular, displ_x_nents on

boundary segments indicated in Fig. 5 grow during
10 s to a value of -0.001, and then are held steady

/
f

Material: B1900 + Hf

Temperature: 1000 ° C

ux = -0.001
Problem statement: ..,_ .,,_ ..,_ .,_ 4-

O.lm 0.1m

Load history:

0.001 °

, displacement

10 1000

Fig. 5. Problem statement for an L-ahaped domain.

r//

time
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a) Initial Mesh

1
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_" b) Adapted Mesh

Fis. 6. _a_pot_m_. (,) _a _. Co)r#m_ ml

until the final time of 1000 s. The temperature is equal

1000°C, and the material is a superalloy BI900 + Hf.

The problem was solved with adaptive mesh refine-
ment. A comparison of initial mesh and the final

adapted mesh is shown in Fig. 6. Contours of stre_
intensity and of damage are presented in Fig. 7. As

ex_ad, the adaptive procedure correctly refined the
mesh around the corner singularities. The adapted
mesh identified the maximum damage zone and

predicted a high damage level, m,m- 0.45. In fact,
the damage zone is so concentrated that initiation
ofmacro-crackcan be predictedhere. Although the

locationof crackinitiation(cornerofthe L-shaped

domain) isobviousin thistestproblem,in mote

general practical situations the appropriate adaptive
procedure can also correctly identify such cases.

5.3. SSME combustion chamber liner

An adaptive analysis of an dement of the SSME
combustion chamber liner, subjected to thermal and
mechanical loadshas been taken as an illustration

of the application of damage modeling to practical

problems in aerospace structures. The problem for
this example is illustrated in Fig. 8. The cross section
of one cell of the linear is almost rectangular, with the
internal coolant passage subjected to a pressure of

I/I / I

a)

, 03max= 0.

I

m. Co)
for -- _ i-_

3900 psi (25.5 MPa). The initial temperature is of the
order of -200°C, with almmt uniform distribution

throughout the crom-m:tiom The thermal load history
corresponds to a rapid heating of the liner from the
inside in 5 s up to a temperature close to 600°C.

temperature gradient is held almost constant
for 10 i, and then the liner is cooled down in 5 s.
An idealization of this history is shown in Fig. 8.

The above problem was solved with boundary
conditiom, corresponding to a single cell of an axi-

symmetric liner, as shown in Fig. 9. The initial mesh
for this problem is shown in Fig. 10. Starting from
this mesh, a finite element adaptive procedure gener-
ated the refined mesh, as shown in Fig. 11. As will he
shown lamr, this mesh correctly identifies regions of

high stress and damage. For this problem, a combin-
ation of internal pressure and temperature gradient
causes an extensive deformation of a bottom wall

shown withexaggeratedscale in Fig. 11. The corre-

sponding temperature distribution is shown in Fig. 12
----high gradients are present near the bottom wall of
the cell. The high temperature gradient and internal

"sC
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3900 PSI

0,028 m

0.040 in

Material: copper

Thermal history: "_

\ -200"C _ time (sec)

5 IS 20

Fig. 8. SSME combustion chamber liner:, pfobleen ststement
and simplified thermal load history.

heating

Fig. 9. Boundary conditions for the combustion chamber
liner.

pressure cause high stress levels and some plastic

deformation of the bottom wall as shown in Figs. 13

and 14. Due to the mostly compressive nature of

stresses at this stage, damage development is very
low and does not exceed ca _ 10 -7 at the end of the

heating period.
During a cooling phase the situation is generally

reversed-due to the specific boundary conditions
and the plastic yield which occurred during heating.

high tensile stresses develop in the bottom wall of the

cell. The deformed configuration at the end of the

cooling period is shown in Fig. 15. One can observe

a thinning of the bottom wall caused by a combin-

ation of tensile stresses and internal preuure. The

distribution of stresses at the end of the cooling

period is shown in Fig. 16 and the corresponding

principal plastic strain is illustrated in Fig. 17. In the
cooling phase, the damage development is accelerated

Fig. I0. SSME liner-initial mesh.

w.f_l ul| _t • m.

Fig. 11. SSME liner.deformed configuration at the end of
the heating period: t - 15 mmnds.

in the bottom wall--the corresponding distribution

of damage is shown in Fig. 18.

To better illustrate the development of the damage

pattern, histories of damage for the inner lower
corner sad for the center of lower face of the cell are
shown in Fig. 19. It can be seen that damage develop-

ment is indeed accelerated during the cooling phase.
One can expect that further damage will evolve in the

consecutive cycles of heating--cooling. This example

dearly illustrates the potential of adaptive finite
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Fig. 13. SSME liner-distribution of stress intensity at the end

of the heating period: t u 15 seconds.
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Fig. 15. SSME liner-deformed configuration at the end o£

thecycle: : - 20s_onds.
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Fig. 16. SSME liner-dist_bution of str_ intensity at the end

of the cycle: t : 20 seconds.
Fig. 17. SSME liner.distribution of principal plastic strain

at the end of the cycle: t : 20 seconds.
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Fig. 18. SSME finer-contours of damage at the end of the

cycle: t - 20 leconds.
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element methods in the identification of critical zones

and damage patterns of aerospace structures.

& CONCLUSIONS

The formulations and results presented in this
paper clearly confirm the feasibifty of developing
adaptive finite element methods for modefng damage
evolution and for making life predictions of high-
temperature structures.

The error estimation and adaptive mesh refinement

not only provide a_--m-acy control and an optimal
solution at a minimum cost, but are also capable of
pinpointing locations, where concentrated continuum
damage growth leads to initiation of macro-cracks.

Similarly, the adaptive time-stepping guarantees

error control and optimal adjustments of time steps,
with the actual values of the time steps often varying
by the factors of 1000 depending on the evolution of
the nonlinear deformation in the structure.
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As far as damage modeling is concerned, the

following remarks are applicable: (1) while theoretical

formulations of the damage modeling are presently

quite mature, the number of reliable experimental

studies dedicated to the determination of material

constants and the verification of theory is still very

limited. (2) The rate of continuum damage develop-

merit is very sensitive to the temperature and the

stress ievei---a small variation of these parameters
leads to considerable changes in the predicted time to

rupture. This sensitivity emphasizes the importanoe

of an accurate prediction of the stresses by the
application of error estimation and mesh refinement.

(3) This paper addressed only the low-cycle damage

development, wherein rupture happens after a

relatively short time, and the damage parameter can

be effectively integrated as a function of time. (4) For

many practical applications it is also important to
consider high-cycle damage, wherein it is much more

efficient to integrate damage over the number of cycles,

rather than directly over time. The extrapolation

techniques are useful in cases of long-term damage
evolutions.
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